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Abstract. Young supertableaux are introduced for finite-dimensional representations of 
orthosymplectic superalgebras and used to study their content. 

1. Introduction 

Since the classification of the superalgebras was established [ I ]  their representations 
have been progressively better understood. In [2] the general theory of the representa- 
tions was given. The representations of OSp(212) and SU(211) have been considered 
in [3] while their general properties were made explicit in [4] for the unitary superalgebras 
and in [5] for the orthosymplectic ones. Young supertableaux were then proposed 
[6-91 to describe representations of SU( mln).  However some ambiguities are present 
in their definition, due to the existence of representations involving simultaneously 
covariant and contravariant tensors [9-101. Such a problem does not appear for 
orthosymplectic superalgebras since their bosonic part involves orthogonal and sym- 
plectic algebras. 

Young supertableaux for representations of orthosymplectic superalgebras are 
defined in this paper, and used to give the content of a representation into representation 
of its bosonic part SO( M )  x Sp(2n). For such purposes great use is made of the notion 
of generalised Young tableaux (GYT) introduced in [ 1 I ]  and [ 121 to perform products 
of SO( M )  representations as well as Sp(2n) representations. 

After recalling in 9 2 the main properties of the representations of OSp(M12n), we 
associate in § 3 to each irreducible representation a Young supertableau (YST) and 
find out the SO( M )  x Sp(2n) representations which compose it. Our method is illus- 
trated in § 4 by two examples and discussed briefly in § 5 .  Finally some properties of 
Young tableaux for orthogonal and symplectic groups are recalled in appendix 1. 

2. A reminder about the representations of OSp(MJ2n) 

There are three kinds of orthosymplectic algebras OSp( M12n): B (  m, n )  = 
OSp(2mS 112n); C(n)=OSp(2(2n-2) ,  ( n 3 2 ) ;  and D(m,  n)=OSp(2m12n), ( m 3 2 ,  
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n > 0). To each of them one can associate a Kac-Dynkin diagram [l]: 

a,,, + n I 

0 o-----o 
i 

A 
0 D ( m ,  4. 

Q <  a,, - n 

a ,  a"-l an  an+l 

SU(n)  - 
SO(2m) 

We note the special status of B(0,  n )  = OSp( 112n) the Kac-Dynkin diagram of which 
is 

a ,  a2 a"- ,  0" - -  
and which carries the property of having only typical representations. 

The superalgebra C ( n )  is of 'type I' while B ( m ,  n )  and D(m,  n )  are of 'type II', 
the difference being that the odd roots in the first case are in a reducible representation 
of the bosonic subalgebra U( 1 ) x Sp(2n - 2) and in the other cases in an irreducible 
representation of SO(2m) xSp(2n) or SO(2m + 1 )  xSp(2n).  The consequence is that 
a,, in  B(m,  n)  and D(m,  n )  has to be integer or half-integer, while a,=, can be any 
complex number in C ( n ) .  Let us note that the case of the superalgebras D(2, 1 ;  a) 
considered as exceptional superalgebras will not be considered in this paper. 

An irreducible representation is uniquely characterised by the coordinates of its 
highest weight A in the root space, which appear on the Kac-Dynkin diagram. 

The coordinates of A in the root space characterise a SO( M )  x Sp(2n) representa- 
tion: the SO( M )  representation can be directly read on the Dynkin diagram, but one 
of the simple roots (the longest) of Sp(2n) is 'hidden' behind the odd simple roots. 
From the knowledge of % + k  k = 0, 1 , .  . . .  m it is possible to deduce the component b 
that A would have with respect to the longest simple root: 

in the B( m, n )  case: b = a,_ - a,+, -. . .  - 
in the D(m,  n )  case: b=a,,-a, ,+l-  . . . -  a , ,+ , , -2 -~(a , , ,+ , , - ,+a , , ,+n) .  

--$(a,,,+,,) (2.1) 

(2.1') 

This immediately implies that the highest weight h of a finite OSp( Mln) representation 
belongs to an S O ( M )  xSp(2n) representation, i.e. one must require b 2 0 ,  and some 
consistency conditions [2]: 

for B(m,  n )  if b < m: an+b+l  = 

for D( m, n )  if b m - 2 :  an+b+ , = . . .  = a,,+,,, = 0 

= .  . .  = an+,,, = 0 (2.2) 

(2.2') 
- and if b = m - 1: a,,,-,,-, - am+,,. 
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The OSp( M12n) representation is a reducible SO( M )  X Sp(2n) representation, 
which is obtained from A by repeated application of the generators corresponding to 
the negative odd roots pq . (We use here and in the following the notation and results 
[5].) This deserves a bit of explanation. In OSp( M(2n) ,  the odd generators belong to 
the irreducible ( m ,  2n) representation of SO( M )  x Sp(2n). The distinction between 
positive and negative odd roots refer to the S O ( M )  xSU(n) decomposition of the 
OSp(M12n) superalgebra. This decomposition is made such that the OSp( M12n) 
algebra (except C (  n ) )  obeys the SU( n )  x O( M )  gradation: 

G-2( n( n + 1)/2, 1 ) + G- I (n, M )  + Go[ ( n 2  - 1, 1 ) + ( 1, M (  M - 1)/2)] 

+ G,(A, M ) +  G2(n(n+1)/2, 1).  

The generators corresponding to the negative odd roots pp- belong to GI and are in 
the (E, m )  representation of SU( n )  x SO( M ) .  Denoting /3:- the SU( n) x SO( M )  highest 
weight in (A, M )  the other p,"- are obtained by commuting /.?:- with the generators 
corresponding to the negative even simple roots. Because of the properties of the 
algebra, one obtains 

where ( T a b ) -  are the generators corresponding to the negative roots of Sp(2n)/SU(n). 
Applying the odd generators pp on A, one builds up new representations of SU( n )  x 
S O ( M )  and it is only when one applies ( T a b ) - p f -  that one recovers SU(n) x S O ( M )  
representations which merge together to build up the Sp(2n) x S O ( M )  representation. 
That means that in the product of pp-'s one applies on A, the symmetric contributions 
are there to complete the SU(n) xSO(M) representations in the Sp(2n) xSO(M) 
representations and it is only the antisymmetric combinations which introduce new 
Sp(2n) x SO( M )  representations. The resulting OSp( M12n) representation is the 
reducible Sp(2n) x SO( M )  representation obtained by repeated application of p,"-. 

It happens sometimes that one might find in an OSp(Ml2n) representation a weight 
A, different from the highest weight A, but which is annihilated by all the positive even 
or odd simple roots: the representation is then called atypical, and the Sp(2n) xSO(M) 
representations reached from A are decoupled from the representation. The atypicality 
of a OSp(M12n) representation depends on the coordinates of the highest weight A 
and can be expressed through the atypicality conditions. They are [2]: 

for B(m,  n ) :  
j f: a,- c a , + Z n - i - j = O  

, = I  t = n + l  
( 2 . 3 ~ )  

(2 .36)  

for D(m,  n) :  

i a,- f: a , + 2 n - i - j = 0  
I = I  l = n + I  

m t n - 2  f a,- 1 a l - a m + n + n - m - i + ~  = O  (2.4b) 
1 = t  l = n + l  
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- i + j - 2 m + 2  = 0 1 6  i s  n < j <  m + n - 2  ( 2 . 4 ~ )  

for C ( n ) :  
I 

a , =  2 a r + i - l  
t = 2  

a , =  2 a , + 2  a f + 2 n - i - 1 .  
r=2  r = i + l  

( 2 . 5 ~ )  

(2.5b) 

Where none of these conditions are satisfied, the representation is 'typical', and its 
dimension can be calculated as follows: 

3. Young supertableaux for OSp(M12n) 

In the same way Young supertableaux were introduced from SU( n )  Young tableaux, 
we construct hereafter Young supertableaux for OSp(M12n) algebras with the help of 
Young tableaux for Sp(2n) and S O ( M )  groups. Using techniques developed in [ l l ]  
and [ 121 to make products of SO( M )  and Sp(2n) representations (via GYT'S), we show 
in particular how such supertableaux can be used to give the content of a representation 
of OSp(M12n) into representations of Sp(2n) x S O ( M ) .  A brief recall about Young 
tableaux for Sp(2n) and SO( M )  representations is given in appendix 1. 
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3.1. Case of B ( m ,  n )  = OSp(2m t l (2n)  superalgebras 

The following Kac-Dynkin diagram 

a1 a2 an-[ a, an+ ,  g n + m - ~  an+m 
O-S-0.. . . . .o r;\ o......o--t-- 

characterises an I R ,  the highest weight of which is in the Sp(2n) X SO(2m + 1 )  IR:  

a ,  a2 an-1 b a"+[ an+, , - [  an+m 

(W,, o.=to , 0-0 ,m 
with b = a, - an+ l  -. . . - 

( A , ,  . . . , A, ;  p l ,  . . . , p,,,) where: 

-fa,+,,,. 
We will associate to this B(m,  n )  representation the Young supertableau (YST): 

n-I 

A , = b +  E a ,  

A, = b 

( i =  1 , .  . . , n - 1 )  
1 = ,  

and 
m - I  

p . = n + '  ?an+m+ E an+, 
1 = j  

Pm=n++an+m (j= I , .  . . ~ m -  1) 

(3.1) 

and A i  (resp. pj) has to be seen as the number of of boxes in the ith row (jth column): 

PI P I ' .  . p," 
En,:: ;:.); 1 @J ;; 
* :  p::+Q , 

EP 

.. .. . . \ . . I I , , 1 ' .  , . ,  , . ,  . . .  . . . '  : I  

A ,, - - - - -  __. . ..h I , . .  : ,' , .  I 6 , . ,  

Such a tableau is legal if the highest non-vanishing label a n + k  is such that k 6  b. If 
b < m one recovers the consistency relations (2.2). 

The construction of this tableau is easily done by drawing firstly the Sp(2n) Young 

tableau associated to c>----o,, , , ,o--c-o and then adding to the bottom of this 

tableau the transpose of the Young tableau corresponding to the representation 

a ,  a2 an ~~ I b 

of SO(2m + 1) .  a,+, an + m 

. . . . . . .  

Before giving the rule for reducing a B ( m l n )  representation with respect to its 
bosonic part, let us introduce the following formal decomposition associated to a YST 

{ P I +  

(3 .2)  

t A formula of this type has been proposed, in the form ( p ) +  E m  ( ~ / u ) ,  [ 6 / D ]  by King [7]; for the notation 
see [ 131. 
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where the first term in the bracket of the RHS of (3.2) has to be read as relative to 
Sp(2n) while the second is relative to SO(2m + 1). The L,’s are the negative GYT 

introduced in [ 1 I ]  and the sum is over all the possible ordered partitions U defining 
negative YT. In the product L, ~ [ p ]  only the positive YTS will be retained. To each 
L, one associates a positive YT i, obtained by transposing L, and considered as an  
orthogonal Young tableau. The P’, are the negative GYT’S introduced in [12] and in 
the product P’, x i, only positive YT’S have to be retained (see examples in § 4). 

In this decomposition, one has to keep only legal Sp(2n)  and S 0 ( 2 m +  1 )  Young 
tableau. Moreover, each time one gets from the product P’, x 2, a YT with more than 
m rows but less than (2m + 1) rows, one has to replace it by the ‘shortened tableau’ 
obtained by changing each column with p boxes, 2m + 1 3 p > m, by a column with 
2m + 1 - p  boxes; of course, if the obtained tableau is no more a M (i.e. of the form 
( p l ,  . . . , p m )  with p1 5. . . 5 pm 5 0) it has to be thrown away. Finally, if two identical 
YTS appear, the first one obtained by this last rule and the other one right away from 
the product P’, x i ,  then one must keep only one of them. Note that these concepts 
on modification rules are conveniently summarised in [ 131. 

Now, let us announce the rule giving the reduction of a B ( m ,  n) representation 
into Sp(2n)  xSO(2m + 1)  ones; we have to separate the typical representation case 
from the atypical representation case. 

3.1.1. Typical representation. Write the highest weight representation ([A], [K] )  of 
Sp(2n) xSO(2m + 1 )  in the representation {p} = ( A , ,  . . . , A, ;  p , ,  . . . , p m )  (see (3.1)) of 
B(m,  n )  where the orthogonal Young tableau [ K ]  = [ K , ,  K ~ ,  . . . , K,,,] with K~ = pi - n 
denotes the number of boxes in the ith row. 

If [ K ]  is the trivial representation, apply the ‘decomposition formula’ (3.2). 
If [ K ]  is not the trivial SO(2m + 1 )  representation, the decoposition will be: 

The sum is over all the partitions U yielding by the product L, x[A] legal (and therefore 
positive) Sp(2n) Young tableaux. The products ~ , X [ K ]  have to be considered as 
products of orthogonal Young tableaux (satisfying the rules given in [6]) but we will 
keep in these products only the terms appearing in the decomposition given by 
expression (3.2). Finally, the tableaux im with more than m rows but less than (2m + 1)  
rows will be considered and  replaced by their corresponding ‘shortened’ partner tableau 
(see above) when possible. We remark that automatically after translating at most 
( 2 m +  1)n boxes from [ A ]  to [ K ]  the RHS of (3.2) has no meaning in the sense that only 
illegal SO(2m + 1 )  YT’S would then appear. 

3.1.2. Atypical representation. There are 2mn atypical conditions for B ( m ,  n) (see 
(2.3~2, b)) but in general some of these conditions are not relevant, requiring values of 
the Kac-Dynkin labels a priori not allowed. 

We shall identify an  atypical condition by a couple of integers (k, I )  k = 1, . . . , 2 m ;  
1=1 ,  . . . ,  n ;  where k s m ,  k = j - n + l ,  l = n - i + l ,  ( i , j )  appearing in ( 2 . 3 ~ )  m > k ,  
k = j -  n + m + 1, 1 - n - i +  1 (i, j )  in (2.3b). An atypical (k, I) B ( m ,  n) representation 
can be decomposed into representations of its bosonic part using, firstly, the ‘typical’ 
decomposition given above and, next, by taking away at the rth level, r = number of 
boxes of L,, the eventual Sp(2n) xO(2m + 1) highest weight which may label a 
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( k  - p, 1 - a )  atypical E (  m, n )  representation where a + p = r. The decoupling has to 
be performed for the larger Sp(2n) x O ( 2 m  + 1) weight at the level where the atypical 
( k  - p, 1 - a )  representation first appears. We remark that if the decoupling takes place 
at the first level ( r  = 1) one has to take away an atypical representation of the same kind. 

3.1.3. Spinorial representation Cfor the S 0 ( 2 m +  1)  p a r t ) .  The case of B ( m ,  n )  rep- 
resentations containing SO(2m + 1)  spinorial representation (i.e. an+,,, odd number) 
deserves a bit of attention. 

First of all, we remark that such representations are always typical. 
Young tableaux for spinorial representations are defined in appendix 1 and have 

to be used in (3.3). The supertableau { p }  will now contain 0 boxes as well as 
boxes (specifically, its ( m  + 1)th row being formed by m spinorial boxes). In order 
to write the R H S  of (3.2) in this case it is sufficient to consider [ p ]  as made only of 
0 boxes, that is, to erase the s-label inside the boxes which are preynt,  and 
finally to put s-symbols in the m boxes which corrstitute the first column of Lo before 
doing the product P', x i, Of course this means that one restricts oneself to i, with 
at least m rows. 

3.2. Case o f D ( m ,  n )  = OSp(2m12n) superalgebras 

The following Kac-Dynkin diagram: 

characterises an IR,  the highest weight of which is in the Sp(2n) xSO(2m) I R :  

with b = a , - a n + , - .  . . - U ~ + ~ - ~ - ~ ( U ~ + ~ - ~ + U ~ + ~ ) .  

( A I , .  . .  , A n ;  P I , .  . .  , P m )  where 
We will associate to this D(m,  n) representation the Young supertableau 

n - l  

A ,  = b +  a ,  ( i =  1, .  . . .  n )  
I=i 

An = b (j= 1, . . . .  m -  1) 

and (3.4) 

Such a tableau is legal if the highest non-vanishing label a n + k  is such that k s  b. If 
b < m one recovers the consistency relations (2.2'). 
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We are in complete analogy with the B(m,  n )  case and the reduction into bosonic 
representations can be done using the same techniques to which have to be added the 
two following prescriptions. 

> a,+,,,, leading to a 'non-positive' Young tableau for the S O ( 2 m )  
highest weight, one will consider the D( m, n )  representation obtained from the previous 
one by interchanging a,+,,-, and a,+,,,, getting then a positive (conjugate the previous 
one) Young tableau for the S O ( 2 m )  highest weight. After use of the reduction method, 
it will only be necessary to replace on the result each S O ( 2 m )  representation by its 
conjugate to get the decomposition of the D(m,  n )  representation of interest. 

Secondly, one has to stress that the 2, appearing in the RHS of (3 .2)  and (3 .3)  has 
to be seen as an  O ( 2 m )  representation. That means that in the RHS of (3.2) when a 
YTS (or its 'shortened' version) in P', X i ,  has m rows, it has to be decomposed into 
the sum of two conjugate S O ( 2 m )  representations (see appendix I ) ,  and in the RHS 

of (3 .3 )  when i, (or its 'shortened' version) has m rows, it has also to be decomposed 
into the sum of two conjugate SO(2m)  representations before performing the product 

First, if 

i- x [ K ] .  

3.3. Case o f C ( n )  = OSp(212n - 2 )  superalgebras 

The following Kac-Dynkin diagram: 

*I a2 a"-! an 

0 W 
n o... . . .  .- 

characterises an  I R ,  the highest weight of 
representation 

a2 an- !  a, 

( b ,  M M 1 

The label 
existence, 
tions ( a , ,  

which belongs to the 

n 

with b = a ,  - 1 a,. 
, = 2  

U( 1 )  xSp(2n - 2 )  

a ,  can now take any complex value. This arbitrarity on a ,  implies the 
for any fixed set ( a 2 , .  ... a,) of an  infinite class of typical C ( n )  representa- 
. . . .  a,) with a ,  not satisfying (2.5a, b ) ,  of the same dimension = 22n-2 xd im 

a2 a"-l an 
(M . . . . . . .  ) 

In the following we will restrict ourselves to a, real and integer. 
To the representation ( a , , .  . .  , a,) we will associate the Young supertableau defined 

as follows: for b>O 

p , = 1 +  2 a, ( i  = 1, . . . .  n - 1) 

. . .  = 0). As before, A , denotes the number of boxes in the first row and  pi the number 

r = r + l  

where k is the index of the last non-vanishing Kac-Dynkin label Qk (i.e. ak+l = a k + Z  = 

of boxes in the ith column. 

For b < 0: we choose to define A I  = k - 1 and  pi as given in (3.5) above. However, 
A ,  will now denote the number of positive boxes in the first row, which will also 
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contain b negative ones. As an example, the Young supertableau associated with 
the representation (a ,  = a2 = 0, a3 = 1) of C(3) will be: 9 since in this case 
k = 3, b = -1 and A ,  = p ,  = p 2  = 2. We note that the diagram obtained by erasing the 
first row is just the transpose of the Young tableau associated to the representation 
(a2 , .  . . , a,,) of Sp(2n -2). 

The content of a C( n )  representation { p }  into its U( 1) x Sp(2n - 2) parts can now 
be formed as follows. 

For typical representations we have the decomposition formula: 

11/21 

I = O  j =  I 
{ p )  = 2E2  ( b  - i, [p'] x A, + [ K ]  X At-2, 

where in the RHS, the first term refers to U( 1) and the second one to Sp(2n -2). By 
Ai we denote the completely antisymmetric ith order Young tableau of Sp(2n - 2)-that 
is Ai has only one column of length i, and li/21 means the entire part of i/2. Such 
products of Young tableaux have to be understood as products of Sp(2n -2) Young 
tableaux [ 121. However tableaux with I rows, such that 2 n  - 2 2 1 > n - 1 appearing in 
these products have to be retained and replaced by their 'shortened' analogous (see 
definition given previously) with (2n - 2 - I )  rows, when possible. Finally for i > n - I ,  
one has to keep in the sum over j only the terms such that 2n - 2 - i > i -2 j  or 
( n  - 1) > ( i  - j ) .  

For atypical representations we will again use formula (3.6) but with some modifica- 
tions. The (2n -2) atypicality conditions are given by (2.5a, b ) ,  and we will talk about 
the j th atypicality condition as the one given by (2.5a) with i = j if j S n - 1 and by 
(2.5b) with i = j - ( n  - 1)  if j > n - 1. Then considering a C (  n )  representation satisfying 
the j th atypicality condition, its decomposition with respect to U( 1) x Sp(2n - 2) will 
be given by (3.6) in which will be discarded the obtained Sp(2n -2) Young tableaux 
such that the j th  row contains one more box than the j th  row of [ K ]  if j > n - 1. In 
the case of j > n - 1, then the decomposition will be given by the parts which should 
be neglected for an atypical representation of the kind j' = 2n - 2 - j + 1 s n - 1. We 
remark that the sum of the dimensions of two atypical representations one of kind j 
and the other of kind j ' =  2 n  - 2 - j +  1 relative to the same set of labels (a2 , .  , . , a,) is 
exactly the dimension of the typical representations labelled by ak ( k  = 2, . . . , n ) .  

3.4. Case o f B ( 0 ,  n )  = OSp(l(2n) superalgebras 

As already noticed B(0,  n) superalgebras constitute a special case in the sense that all 
their representations are typical. Moreover these typical representations do not have 
the same number of even (bosonic) and odd (fermionic) degrees of freedom. 

The Sp(2n) representation containing the highest weight in a OSp( 112~)  representa- 
a ,  a2 tion can be directly read from the diagram: -,,,, 

a"-l an by replacing the 
. .  

odd root a, by the nth Sp(2n) root labelled by b=ja , , .  The corresponding Young 
supertableau { p }  has the shape of a usual Young tableau associated to the Sp(2n) 
representation ( a l ,  a,, . . . , b )  and its content in terms of Sp(2n) IRS can be obtained 
by the formula: 
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where the sum is over all the partitions y = 0; -1 ; - 1, -1 ; , . . ; - 1, -1, . . . , -1 ( n  
times) and [ p ]  is the highest weight Sp(2n) representation. 

4. Two illustrative examples of decomposition 

We apply hereafter our methd of reduction of an orthosymplectic superalgebra rep- 
resentation with respect to its bosonic part on two specific examples. The first one 
deals with an atypical representation of B ( 2 ,  1 )  while in the second one a ‘spinorial’ 
representation of D(3, 1 )  is considered. 

A. The representation 

There are four atypical conditions for B(2, l ) ,  namely: 
( I )  a ,  = o  
(11) a,  = a 2 + l  
(111) a ,  = 2 a 2 + a 3 + 2  
(IV) a ,  = 2a2 + a3 + 3. 
We notice that the representation (a ,  = 4, a2  = 0, a3 = 2) satisfies the third condition 

From formula (3.1) we have A ,  = b = 3; p ,  = p2 = 2 and therefore the Young super- 

while the highest weight 

of B(2, 1 )  = OSp(512) 

of atypicality. 

tableau associated to this representation is: { p }  = 

representation of sp(2) xSO(5) is: ( , 1. 
Then considering (3.2) we can start with L, = (0, -2) 

L,, = (0, -2) -3 

then: i,, = ti 
m 

L,, = (0, -3) + & x E F =  

then: i,, = 1 + 

L c = ( - l , - 3 ) +  

then: L, = 

U 
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then: i,, = H 

L,, = ( - 2 ,  -3)+ d f j x p =  
then: i,,= + 83 

While (3.3) gives, with [ A I =  [II3 and [ K ]  = 8 

L" = ( - 1 ) +  d x m =  m 
8 = Ep + + 0 (product in O(5)) o x  

5 10 35 I O  5 

io I O  35 35 I O  14 5 1 

L,, = (-3) + x a =  

We notice that the Sp(2n) xSO(5) representation ( 03 , 0 ). can be seen as the 
highest weight of the B(2, 1) representation ( a ,  = 3, a2 = 1, u3 = 0) which is of the same 
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kind of atypicality (i.e. a ,  = a 2 + a , + 2 )  as the representation we want to reduce. 
Moreover reducing this representation the Young supertableau of which is 

with respect to its bosonic part gives (we leave the details to the reader): 

Thus we can notice that this last B ( 2 ,  1) representation appears completely in our 
decomposition: following our rules we have to delete it. Finally we obtain the decompo- 
sition of { p }  with respect to Sp(2) xSO(5): 

350 4 I O  3 35 10 

2 35 35 1 35 

B. The representation x of o ( 3 ,  1) = OSp(612) then b = A ,  = 3 and 7=c 
p I  = p2 = p3 = 1, and the corresponding Young supertableau is { p }  = . 

So let us first apply (3.2): 

while (3.3) gives, with [ A ] =  and [ K l =  1 
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6 4 20 4 

L,, = ( - 2 )  + & a n = o  

15 4 36 20 4 

L ,  = ( - 3 )  + d x m =  
n 

and this O(6) representation decomposes under SO(6) into the two 

representations , and therefore: 

10 10 4 36 4 20 20 

Comparing the pieces given by ( 3 . 2 )  and ( 3 . 3 )  we realise that the Sp(2)xS0(6)  

representations ( 0 9 I as well as ( 1 ,  p+ $ ) which are present from ( 3 . 2 )  

do not appear from ( 3 . 2 ) :  following our rules, they have to be discarded. Finally we 
obtain 

( a , = &  a , = a , = o ,  a d =  I ) =  &&j = ( c m  # 
256 

4 4  

3 20 4 2 36 20 1 20 36 

5. Role of the odd roots and Young tableaux 

Before discussing the method given in 0 3 ,  let us make two brief remarks. The first 
one is relative to the apparent dissymmetry between the way Sp(2n) and S O ( M )  tensors 
are treated: this reflects the property of the generators corresponding to negative odd 
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roots to be in a SU(n)  x S O ( M )  representation, the SU(n)  group being included in 
Sp(2n). The second point has already be mentioned: it deals with the fact that the 
consistency conditions of 0 2 can be translated as a legality requirement for the Young 
supertableaux. 

Now an important property is the following. 

Lemma. pp- extracts a box from the Sp(2n) Young tableau associated with the highest 
weight A. 

The proof stands in the fact that the operator measuring the number of boxes k in the 
Sp(2n) representation associated with A: 

K = h , + 2 k 2 +  . . .+  nB 

where 

B = h , - ( h , + , + .  . . -hn+,-l+ihn+,, ,)  for B(m, n )  

and 

h n  - (An+, +. * . + $ ( h n + m - l +  h n + m )  for D(m,  n )  

and h , ,  . . . , h,,, Cartan generators, acts on any any even root a ;  and on p:-  as follows: 

[ K ,  a i l  = 0, [ K , P E - ] = - P : - .  

Moreover as observed in 0 2 only the antisymmetric combination of p,”- contributes 
to create new Sp(2n) x S O ( M )  highest weights; i.e. the Sp(2n) indices a have opposite 
symmetry properties from the S O ( M )  indices j .  The action of pp- on the S O ( M )  
indices is more complicated and cannot, in general, be analysed without specifying 
the S O ( M )  I R ,  but what is relevant is the fact that the pp belong to the fundamental 
M-dimensional representation of S O ( M ) .  If the highest weight of S O ( M )  does 
correspond to the trivial I R ,  it gives rise to the ‘decomposition’ formula. If the highest 
weight SO( M) I R  is not the trivial one, the action of pp- can be more easily described, 
due to the above property, in terms of the product with the dual of the Young tableau 
which is formed from the boxes taken from Sp(2n) YT. However, in the product 
performed according to the rules of S O ( M )  YTS product, terms not appearing in (3.2) 
do not appear because they cannot be built up with the pp- operators, so this explains 
the origin of the rule stated in 0 3.  

An atypicality condition expresses the decoupling of a Sp(2n) x SO( M )  highest 
weight, i.e. the decoupling for some p,”- of a pp-x weight, even if x belongs to the 
OSp(M1n) representation. In this case, in order to obtain I R S  described by YSTS we 
consider that the action of pp- on x gives a vanishing vector. So we are not allowed 
to apply this fermionic operator. It follows that not all the S O ( M )  IR,  which a priori 
should appear in the 2, x [ K ]  product of (3.3), are present. 

(a)  There are not enough boxes to apply all the necessary antisymmetric combinations 

(b) Some ‘passages’ of boxes from left (Sp(2n) YT) to right ( O ( M )  YT) are forbidden 
because their corresponding fermionic lowering operator cannot be used. In this case, 
using the rules valid for typical representations, we would get invariant subspaces 
which have to be taken away in order to have the right OSp(M1n) I R .  

The interpretation of atypical representations in terms of YSTS is as follows. 

of pp-. 
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Appendix. Young tableaux for orthogonal and symplectic groups 

An irreducible representation of SO(p)  is defined by m non-negative integers 
(al,, . . , a,,,) or Dynkin labels. Separating the cases (i) p = 2m and (ii) p = 2m + 1 one 
can also represent it by p integers or half-integers ( A , ,  . . . , A p )  related to the Dynkin 
labels as follows: 

(i)  a, = A, - A,,,(j = 1, . . . , p - I )  

a,=A,,,-l+A,,, a,,, = A,,,. 

(ii) a, = A, - A,+l 
(‘41) 

In case (i) all the A’s are positive or null except A,,, which may be negative, while in 
case (ii) all the A’s are positive or null. More precisely 

(i) A ~ ~ A ~ ~ . . . Z ~ A , , ,  (ii) A I  2 A 2 Z . .  .a A,,, 20. (A21 

Actually, any irreducible O ( p )  representation with A, = 0 is irreducible under S O ( p ) .  
If A,,, # 0, this property is still valid for p = 2m + 1, while for p = 2m the O ( 2 m )  
representation ( A  I ,  . . . , A,,,), A, > 0 splits into the two conjugate SO(2m)  representa- 
tions ( A l , .  . . , A,,,-,, A,,,) and  ( A , ,  . . . , A m - l r  -A,,,). If the A’s are all half-integer, the 
representation is called spinorial (it is a representation of the covering group of SO(p) ) .  

From the property (A2) one sees that one can associate to a SO(p)  representation 
a Young tableau with A ,  boxes in the ith row if the A’s are all integer and non-negative. 
In the case where A,,, is negative, a new type of Young tableau-or generalised Young 
tableau, cur-has been introduced in [ 111, [ 121 the last row of which being called a 
‘negative row’: 

.... I 

To the spinorial representation ( A  ,, A2,  . . . , A,,,) with Ai’s half-integer was associated 
in [ 113 for technical reasons the tableau ( A l  -4,. . . , A,,, -$): we will choose another 
way to represent it hereafter. Introducing a ‘spinorial’ box which can be seen as 
a ‘half box with respect to the usual one 0, the spinorial representation of SO(2m) 
or SO(Zm+ 1 )  ( A l , .  . . , A,,,) with A,,, half-integer will be represented with m boxes 
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and ( A , + .  . .+lAml-rn/2) 0 boxes as follows: 

in particular for the fundamental representations: 

m m 
U U 

(l ,  ;, . . . , 1) = 

An irreducible representation of Sp(2n) defined by the Dynkin labels ( a l , .  . . , a,,) 
can also be represented by a-positive-Young tableau (pi,.  . . , p,,) with pi non- 
negative integers related to the Dynkin labels by 

and satisfying: p ,  2 p2 2. . .a p,, 5 0. 
In order to obtain products of orthogonal and symplectic representations, com- 

pletely negative Young tableaux have been introduced in [ 1 11, [ 121. Those appearing 
in (3.2) and (3.3) are the following 

where ui's are positive and integer numbers such that ( T ~  3 ( T ~ + ~  and: 

where ai's are positive even numbers such that ai 3 ai+,. 
Product of a negative Young tableau by a positive one, as well as product of 

orthogonal and symplectic representations will be carried on using the methods presen- 
ted in [ 1 11, [ 121. In order for our notation to be consistent in the product of a negative 
tableau by a positive one, a negative box acting on a spinorial box will not cancel it, 
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as it would do on a usual one, but will yield a negative @ box: as an example in SO(8): 
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